Title of article :
Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations
Author/Authors :
Liu، نويسنده , , Ju and Gomez، نويسنده , , Hector and Evans، نويسنده , , John A. and Hughes، نويسنده , , Thomas J.R. and Landis، نويسنده , , Chad M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
40
From page :
47
To page :
86
Abstract :
We propose a new methodology for the numerical solution of the isothermal Navier–Stokes–Korteweg equations. Our methodology is based on a semi-discrete Galerkin method invoking functional entropy variables, a generalization of classical entropy variables, and a new time integration scheme. We show that the resulting fully discrete scheme is unconditionally stable-in-energy, second-order time-accurate, and mass-conservative. We utilize isogeometric analysis for spatial discretization and verify the aforementioned properties by adopting the method of manufactured solutions and comparing coarse mesh solutions with overkill solutions. Various problems are simulated to show the capability of the method. Our methodology provides a means of constructing unconditionally stable numerical schemes for nonlinear non-convex hyperbolic systems of conservation laws.
Keywords :
phase-field model , Van der Waals fluid , phase transition , Non-convex flux , Hyperbolic-elliptic mixed problem , Nonlinear stability , Time integration , Entropy Variables , Isogeometric analysis
Journal title :
Journal of Computational Physics
Serial Year :
2013
Journal title :
Journal of Computational Physics
Record number :
1485790
Link To Document :
بازگشت