Title of article :
A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws
Author/Authors :
Hao، نويسنده , , Wenrui and Hauenstein، نويسنده , , Jonathan D. and Shu، نويسنده , , Chi-Wang and Sommese، نويسنده , , Andrew J. and Xu، نويسنده , , Zhiliang and Zhang، نويسنده , , Yong-Tao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Homotopy continuation is an efficient tool for solving polynomial systems. Its efficiency relies on utilizing adaptive stepsize and adaptive precision path tracking, and endgames. In this article, we apply homotopy continuation to solve steady state problems of hyperbolic conservation laws. A third-order accurate finite difference weighted essentially non-oscillatory (WENO) scheme with Lax–Friedrichs flux splitting is utilized to derive the difference equation. This new approach is free of the CFL condition constraint. Extensive numerical examples in both scalar and system test problems in one and two dimensions demonstrate the efficiency and robustness of the new method.
Keywords :
hyperbolic conservation laws , Homotopy continuation , WENO scheme , Steady state problems
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics