Title of article :
Combination technique based k-th moment analysis of elliptic problems with random diffusion
Author/Authors :
Harbrecht، نويسنده , , Helmut and Peters، نويسنده , , Michael and Siebenmorgen، نويسنده , , Markus، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
14
From page :
128
To page :
141
Abstract :
We consider the efficient deterministic solution of elliptic boundary value problems with random diffusion matrix. Assuming random perturbations with known k moments, we derive, to leading order in the random perturbationʼs amplitude, deterministic equations for k moments of the random solution. The solutionʼs k-th moment satisfies a k-fold tensor product boundary value problem on the k-fold product domain which can efficiently be discretized in sparse tensor product spaces. By defining the complement spaces via Galerkin projections, the related system of linear equations decouples and can be solved by standard multilevel finite element solvers. Numerical results for k = 2 are presented to validate and quantify our theoretical findings.
Keywords :
Sparse tensor product approximation , Random diffusion , Elliptic boundary value problem , Combination technique
Journal title :
Journal of Computational Physics
Serial Year :
2013
Journal title :
Journal of Computational Physics
Record number :
1485966
Link To Document :
بازگشت