Title of article :
Generalized multiscale finite element method. Symmetric interior penalty coupling
Author/Authors :
Efendiev، نويسنده , , Y. and Galvis، نويسنده , , J. and Lazarov، نويسنده , , R. and Moon، نويسنده , , M. and Sarkis، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L 2 -norm and a boundary weighted L 2 -norm for computing the “mass” matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples.
Keywords :
Multiscale finite element method , Snapshot spaces , upscaling , discontinuous Galerkin
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics