Title of article :
The ultra weak variational formulation of thin clamped plate problems
Author/Authors :
Luostari، نويسنده , , Teemu and Huttunen، نويسنده , , Tomi and Monk، نويسنده , , Peter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
22
From page :
85
To page :
106
Abstract :
We develop a new numerical scheme for a fourth order elliptic partial differential equation based on Kirchhoffʼs thin plate theory. In particular we extend the ultra weak variational formulation (UWVF) to thin plate problems with clamped plate boundary conditions. The UWVF uses a finite element mesh and non-polynomial basis functions. After deriving the new method we then prove L 2 norm convergence on the boundary. Finally we investigate numerically the feasibility of the UWVF for both homogeneous and inhomogeneous problems and show examples of p- and h-convergence.
Keywords :
Non-polynomial , Clamped plate , Ultra weak variational formulation , Upwind discontinuous Galerkin method , Fourth order problem , Kirchhoff?s thin plate
Journal title :
Journal of Computational Physics
Serial Year :
2014
Journal title :
Journal of Computational Physics
Record number :
1486445
Link To Document :
بازگشت