Author/Authors :
McConnell، نويسنده , , Ernest E.، نويسنده ,
Abstract :
Synthetic vitreous fibers (SVFs) are a broad class of inorganic vitreous silicates used in a large number of applications including thermal and acoustical insulation and filtration. Historically, they have been grouped into somewhat artificial broad categories, e.g., glass, rock (stone), slag, or ceramic fibers based on the origin of the raw materials or the manufacturing process used to produce them. In turn, these broad categories have been used to classify SVFs according to their potential health effects, e.g., the International Agency for Research on Cancer and International Programme for Chemical Safety in 1988, based on the available health information at that time. During the past 10–15 years extensive new information has been developed on the health aspects of these fibers in humans, in experimental animals, and with in vitro test systems. Various chronic inhalation studies and intraperitoneal injection studies in rodents have clearly shown that within a given category of SVFs there can be a vast diversity of biological responses due to the different fiber compositions within that category. This information has been further buttressed by an in-depth knowledge of differences in the biopersistence of the various types of fibers in the lung after short-term exposure and their in vitro dissolution rates in fluids that mimic those found in the lung. This evolving body of information, which compliments and explains the results of chronic animal studies clearly show that these “broad” categories are somewhat archaic, oversimplistic, and do not represent current science. This new understanding of the relation between fiber composition, solubility, and biological activity requires a new classification system to more accurately reflect the potential health consequences of exposure to these materials. It is proposed that a new classification system be developed based on the results of short-term in vivo in combination with in vitro solubility studies. Indeed, the European Union has incorporated some of this knowledge, e.g., persistence in the lung into its recent Directive on fiber classification.