Title of article :
Transport of labile carbon in runoff as affected by land use and rainfall characteristics
Author/Authors :
Jacinthe، نويسنده , , P.-A. and Lal، نويسنده , , R. and Owens، نويسنده , , L.B. and Hothem، نويسنده , , D.L.، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2004
Abstract :
The mobilization of organic carbon (C) by water erosion could impact the terrestrial C budget, but the magnitude and direction of that impact remain uncertain due to a lack of data regarding the fates and quality of eroded C. A study was conducted to monitor total organic C and mineralizable C (MinC) in eroded materials from watersheds under no till (NT), chisel till (CT), disk till low input (DT-LI), pasture and forest. The DT-LI treatment relies on manure application and legume cover crops to partly supply the N needed when corn is grown, and on cultivation to reduce the use of herbicides. Each watershed was instrumented with a flume and a Coshocton wheel sampler for runoff measurement. Carbon dioxide (CO2) evolved during incubation (115 days) of runoff samples was fitted to a first-order decomposition model to derive MinC. Annual soil (6.2 Mg ha−1) and organic C (113.8 kg C ha−1) losses were twice as much in the DT-LI than in the other watersheds (<2.7 Mg soil ha−1, <60 kg C ha−1). More than management practices, rainfall class (based on intensity and energy) was a better controller of sediment C concentration and biodegradability. Sediment collected during the low-intensity (fall/winter) storms contained more organic C (37 g C kg−1) and MinC (30–40% of sediment C) than materials displaced during the high-intensity summer storms (22.1 g C kg−1 and 13%, respectively). These results suggest a more selective detachment and sorting of labile C fractions during low-intensity storms. However, despite the control of low-intensity storm on sediment C concentration and quality, increased soil loss with high-energy rainfall suggests that a few infrequent but high-energy storms could determine the overall impact of erosional events on terrestrial C cycling.
Keywords :
Runoff , Labile carbon , Rainfall energy , Tillage
Journal title :
Soil and Tillage Research
Journal title :
Soil and Tillage Research