Title of article :
Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel)
Author/Authors :
Dunn، نويسنده , , Robert O.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
15
From page :
1071
To page :
1085
Abstract :
Biodiesel, an alternative diesel fuel derived from transesterification of vegetable oils or animal fats, is composed of saturated and unsaturated long-chain fatty acid alkyl esters. When exposed to air during storage, autoxidation of biodiesel can cause degradation of fuel quality by adversely affecting properties such as kinematic viscosity, acid value and peroxide value. One approach for increasing resistance of fatty derivatives against autoxidation is to treat them with oxidation inhibitors (antioxidants). This study examines the effectiveness of five such antioxidants, tert-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate (PrG) and α-Tocopherol in mixtures with soybean oil fatty acid methyl esters (SME). Antioxidant activity in terms of increasing oxidation onset temperature (OT) was determined by non-isothermal pressurized-differential scanning calorimetry (P-DSC). Analyses were conducted in static (zero gas flow) and dynamic (positive gas flow) mode under 2000 kPa (290 psig) pressure and 5 °C/min heating scan rate. Results showed that PrG, BHT and BHA were most effective and α-Tocopherol least effective in increasing OT. Increasing antioxidant loading (concentration) showed sharp increases in activity for loadings up to 1000 ppm followed by smaller increases in activity at higher loadings. Phase equilibrium studies were also conducted to test physical compatibility of antioxidants in SME-No. 2 diesel fuel (D2) blends. Overall, this study recommends BHA or TBHQ (loadings up to 3000 ppm) for safeguarding biodiesel from effects of autoxidation during storage. BHT is also suitable at relatively low loadings (210 ppm after blending). PrG showed some compatibility problems and may not be readily soluble in blends with larger SME ratios. Although α-Tocopherol showed very good compatibility in blends, it was significantly less effective than the synthetic antioxidants screened in this work.
Keywords :
antioxidant , biodiesel , Non-isothermal , Fuel stability , Oxidative stability , Pressurized-differential scanning calorimetry , Phase equilibria , scan rate , Oxidation onset temperature
Journal title :
Fuel Processing Technology
Serial Year :
2005
Journal title :
Fuel Processing Technology
Record number :
1507038
Link To Document :
بازگشت