Title of article :
Bijections and recurrences for integer partitions into a bounded number of parts
Author/Authors :
Barnabei، نويسنده , , Marilena and Bonetti، نويسنده , , Flavio and Silimbani، نويسنده , , Matteo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
7
From page :
297
To page :
303
Abstract :
Let Π s ( n ) denote the set of partitions of the integer n into exactly s parts, and Π s ( 2 ) ( n ) the subset of Π s ( n ) containing all partitions whose two largest parts coincide. We present a bijection between Π s ( 2 ) ( n ) and Π s − 1 ( m ) for a suitable m < n in the cases s = 3 , 4 . Such bijections yield recurrence formulas for the numbers P 3 ( n ) and P 4 ( n ) of partitions of n into 3 and 4 parts. Furthermore, we show that the present approach can be extended to the case s = 5 , 6 .
Keywords :
generating function , Partition of an integer , Ferrers diagram
Journal title :
Applied Mathematics Letters
Serial Year :
2009
Journal title :
Applied Mathematics Letters
Record number :
1525739
Link To Document :
بازگشت