Title of article :
Wasserstein metric convergence method for Fokker–Planck equations with point controls
Author/Authors :
Petrelli، نويسنده , , Luca and Kearsley، نويسنده , , Anthony J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Monge–Kantorovich mass transfer theory is employed to obtain an existence and uniqueness result for solutions to Fokker–Planck Equations with time dependent point control. Existence for an approximate problem is established together with a convergence analysis in the Wasserstein distance through equivalence with weak- ⋆ convergence.
Keywords :
Wasserstein distance , Fokker–Planck equations , Nonlinear diffusion equations , Gradient free minimization , Point controls
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters