Title of article :
Wasserstein metric convergence method for Fokker–Planck equations with point controls
Author/Authors :
Petrelli، نويسنده , , Luca and Kearsley، نويسنده , , Anthony J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
6
From page :
1130
To page :
1135
Abstract :
Monge–Kantorovich mass transfer theory is employed to obtain an existence and uniqueness result for solutions to Fokker–Planck Equations with time dependent point control. Existence for an approximate problem is established together with a convergence analysis in the Wasserstein distance through equivalence with weak- ⋆ convergence.
Keywords :
Wasserstein distance , Fokker–Planck equations , Nonlinear diffusion equations , Gradient free minimization , Point controls
Journal title :
Applied Mathematics Letters
Serial Year :
2009
Journal title :
Applied Mathematics Letters
Record number :
1526099
Link To Document :
بازگشت