Title of article :
Cycles through Large Degree Vertices in Digraphs: A Generalization of Meynielʹs Theorem
Author/Authors :
Berman، نويسنده , , Kenneth A. and Liu، نويسنده , , Xin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Abstract :
LetD=(V, E) be a digraph with vertex setVof sizenand arc setE. Foru∈V, letd(u) denote the degree ofu. AMeyniel set Mis a subset ofVsuch thatd(u)+d(v)⩾2n−1 for every pair of nonadjacent verticesuandvbelonging toM. In this paper we show that ifDis strongly connected, then every Meyniel setMlies in a (directed) cycle, generalizing Meynielʹs theorem. Our proof yields anO(|M| n4) algorithm for finding such a cycle. As a corollary it follows that ifDis strongly connected, thenDcontains a cycle through all vertices of degree ⩾nwhich generalizes a result of Shi for undirected graphs.
Keywords :
Hamiltonian cycles , dense digraphs , Meynielיs theorem
Journal title :
Journal of Combinatorial Theory Series B
Journal title :
Journal of Combinatorial Theory Series B