Title of article :
A Sharp Upper Bound of the Spectral Radius of Graphs
Author/Authors :
Hong، نويسنده , , Yuan-Yuan and Shu، نويسنده , , Jin-Long and Fang، نويسنده , , Kunfu Ouyang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
7
From page :
177
To page :
183
Abstract :
Let G be a simple connected graph with n vertices and m edges. Let δ(G)=δ be the minimum degree of vertices of G. The spectral radius ρ(G) of G is the largest eigenvalue of its adjacency matrix. In this paper, we obtain the following sharp upper bound of ρ(G): ρ(G)⩽δ−1+(δ+1)2+4(2m−δn)2.Equality holds if and only if G is either a regular graph or a bidegreed graph in which each vertex is of degree either δ or n−1.
Keywords :
Spectral radius , genus , Minor , upper bounds
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2001
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1526772
Link To Document :
بازگشت