Title of article :
High-Girth Graphs Avoiding a Minor are Nearly Bipartite
Author/Authors :
Galluccio، نويسنده , , Anna and Goddyn، نويسنده , , Luis A. and Hell، نويسنده , , Pavol، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
14
From page :
1
To page :
14
Abstract :
Let H be a fixed graph. We show that any H-minor free graph G of high enough girth has circular chromatic number arbitrarily close to two. Equivalently, each such graph G admits a homomorphism to a large odd circuit. In particular, graphs of high girth and of bounded genus, or of bounded tree width, are “nearly bipartite” in this sense. For example, any planar graph of girth at least 16 admits a homomorphism to a pentagon. We also obtain tight bounds on the girth of G in a few specific cases of small forbidden minors H.
Keywords :
Homomorphism , circular chromatic number , star chromatic number , girth , forbidden minor , nearly bipartite graph , genus
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2001
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1526870
Link To Document :
بازگشت