Title of article :
On the Chromatic Roots of Generalized Theta Graphs
Author/Authors :
Brown، نويسنده , , Jason I. and Hickman، نويسنده , , Carl and Sokal، نويسنده , , Alan D. and Wagner، نويسنده , , David G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
The generalized theta graph Θs1, …, sk consists of a pair of endvertices joined by k internally disjoint paths of lengths s1, …, sk⩾1. We prove that the roots of the chromatic polynomial π(Θs1, …, sk, z) of a k-ary generalized theta graph all lie in the disc |z−1|⩽[1+o(1)] k/log k, uniformly in the path lengths si. Moreover, we prove that Θ2, …, 2≃K2, k indeed has a chromatic root of modulus [1+o(1)] k/log k. Finally, for k⩽8 we prove that the generalized theta graph with a chromatic root that maximizes |z−1| is the one with all path lengths equal to 2; we conjecture that this holds for all k.
Keywords :
graph , generalized theta graph , Complete bipartite graph , Potts model , Lambert W function , chromatic roots , series-parallel graph , Chromatic polynomial
Journal title :
Journal of Combinatorial Theory Series B
Journal title :
Journal of Combinatorial Theory Series B