Title of article :
On the Isomorphisms of Cayley Graphs of Abelian Groups
Author/Authors :
Feng، نويسنده , , Yan-Quan and Liu، نويسنده , , Yan-Pei and Xu، نويسنده , , Ming-Yao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
16
From page :
38
To page :
53
Abstract :
Let G be a finite group, S a subset of G\{1}, and let Cay (G,S) denote the Cayley digraph of G with respect to S. If, for any subset T of G\(1), Cay(G,S)≅Cay(G,T) implies that Sα=T for some α∈Aut(G), then S is called a CI-subset. The group G is called a CIM-group if for any minimal generating subset S of G,S∪S−1 is a CI-subset. In this paper, CIM-abelian groups are characterized.
Keywords :
Cayley digraph , CI-subset , CIM-group.
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2002
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527041
Link To Document :
بازگشت