Title of article :
Triangle-free Hamiltonian Kneser graphs
Author/Authors :
Chen، نويسنده , , Ya-Chen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
16
From page :
1
To page :
16
Abstract :
The Kneser graph K(n,k) has as vertices the k-subsets of {1,2, …, n}. Two vertices are adjacent if the k-sets are disjoint. When n<3k, the Kneser Graph K(n,k) has no triangle. In this paper, we prove that K(n,k) is Hamiltonian for n⩾(3k+1+5k2−2k+1)/2, and extend this to the bipartite Kneser graphs. Note that (3k+1+5k2−2k+1)/2<2.62k+1.
Keywords :
uniform subset graphs , Hamiltonian cycles , antipodal layers problem , Kneser graphs
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2003
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527281
Link To Document :
بازگشت