Title of article :
Excluding any graph as a minor allows a low tree-width 2-coloring
Author/Authors :
DeVos، نويسنده , , Matt and Ding، نويسنده , , Guoli and Oporowski، نويسنده , , Bogdan and Sanders، نويسنده , , Daniel P. and Reed، نويسنده , , Bruce and Seymour، نويسنده , , Paul and Vertigan، نويسنده , , Dirk، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
17
From page :
25
To page :
41
Abstract :
This article proves the conjecture of Thomas that, for every graph G, there is an integer k such that every graph with no minor isomorphic to G has a 2-coloring of either its vertices or its edges where each color induces a graph of tree-width at most k. Some generalizations are also proved.
Keywords :
tree-width , Edge partitions , vertex partitions , Small components
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2004
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527401
Link To Document :
بازگشت