Title of article :
Long cycles in triangle-free graphs with prescribed independence number and connectivity
Author/Authors :
Enomoto، نويسنده , , Hikoe and Kaneko، نويسنده , , Atsushi and Saito، نويسنده , , Akira and Wei، نويسنده , , Bing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
13
From page :
43
To page :
55
Abstract :
The Chvátal-Erdős theorem says that a 2-connected graph with α(G)⩽κ(G) is hamiltonian. We extend this theorem for triangle-free graphs. We prove that if G is a 2-connected triangle-free graph of order n with α(G)⩽2κ(G)−2, then every longest cycle in G is dominating, and G has a cycle of length at least min{n−α(G)+κ(G),n}.
Keywords :
longest cycle , Triangle-free graph , connectivity , independence number
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2004
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527404
Link To Document :
بازگشت