Title of article :
The perfect matching polytope and solid bricks
Author/Authors :
de Carvalho، نويسنده , , Marcelo H. and Lucchesi، نويسنده , , Clلudio L. and Murty، نويسنده , , U.S.R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
6
From page :
319
To page :
324
Abstract :
The perfect matching polytope of a graph G is the convex hull of the set of incidence vectors of perfect matchings of G. Edmonds (J. Res. Nat. Bur. Standards Sect. B 69B 1965 125) showed that a vector x in Q E belongs to the perfect matching polytope of G if and only if it satisfies the inequalities: (i) x ⩾ 0 (non-negativity), (ii) x ( ∂ ( v ) ) = 1 , for all v ∈ V (degree constraints) and (iii) x ( ∂ ( S ) ) ⩾ 1 , for all odd subsets S of V (odd set constraints). In this paper, we characterize graphs whose perfect matching polytopes are determined by non-negativity and the degree constraints. We also present a proof of a recent theorem of Reed and Wakabayashi.
Keywords :
Matchings , Bricks , The perfect matching polytope
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2004
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527500
Link To Document :
بازگشت