Title of article :
Improved intermediate asymptotics for the heat equation
Author/Authors :
Bartier، نويسنده , , Jean-Philippe and Blanchet، نويسنده , , Adrien and Dolbeault، نويسنده , , Jean and Escobedo، نويسنده , , Miguel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
76
To page :
81
Abstract :
This letter is devoted to results on intermediate asymptotics for the heat equation. We study the convergence towards a stationary solution in self-similar variables. By assuming the equality of some moments of the initial data and of the stationary solution, we get improved convergence rates using entropy/entropy-production methods. We establish the equivalence of the exponential decay of the entropies with new, improved functional inequalities in restricted classes of functions. This letter is the counterpart in a linear framework of a recent work on fast diffusion equations; see Bonforte et al. (2009) [18]. The results extend to the case of a Fokker–Planck equation with a general confining potential.
Keywords :
Self-similar variables , entropy , Ornstein–Uhlenbeck equation , Poincaré inequality , logarithmic Sobolev inequality , Intermediate asymptotics
Journal title :
Applied Mathematics Letters
Serial Year :
2011
Journal title :
Applied Mathematics Letters
Record number :
1527521
Link To Document :
بازگشت