Title of article :
(Δ-k)-critical graphs
Author/Authors :
Farzad، Babak نويسنده , Molloy، Michael نويسنده , , Reed، Bruce نويسنده
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
13
From page :
173
To page :
185
Abstract :
Every graph G of maximum degree Δ is ( Δ + 1 ) -colourable and a classical theorem of Brooks states that G is not Δ -colourable iff G has a ( Δ + 1 ) -clique or Δ = 2 and G has an odd cycle. Reed extended Brooks’ Theorem by showing that if Δ ( G ) ⩾ 10 14 then G is not ( Δ - 1 ) -colourable iff G contains a Δ -clique. We extend Reedʹs characterization of ( Δ - 1 ) -colourable graphs and characterize ( Δ - 2 ) , ( Δ - 3 ) , ( Δ - 4 ) and ( Δ - 5 ) -colourable graphs, for sufficiently large Δ , and prove a general structure for graphs with χ close to Δ . We give a linear time algorithm to check the ( Δ - k ) -colourability of a graph, for sufficiently large Δ and any constant k.
Keywords :
critical graphs , graph colouring , Probabilistic methods , chromatic number , maximum degree
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2005
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527530
Link To Document :
بازگشت