Title of article :
Spectral estimates for Abelian Cayley graphs
Author/Authors :
Friedman، نويسنده , , Joel and Murty، نويسنده , , Ram and Tillich، نويسنده , , Jean-Pierre، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
11
From page :
111
To page :
121
Abstract :
We give two short proofs that for fixed d, a d-regular Cayley graph on an Abelian group of order n has second eigenvalue bounded below by d - O ( dn - 4 / d ) , where the implied constant is absolute. We estimate the constant in the O ( dn - 4 / d ) notation. We show that for any fixed d, then for a large odd prime, n, the O ( dn - 4 / d ) cannot be improved; more precisely, most d-regular graphs on prime n vertices have second eigenvalue at most d - Ω ( dn - 4 / d ) for an odd prime, n.
Keywords :
Abelian Cayley graphs , Eigenvalue bounds
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527644
Link To Document :
بازگشت