Title of article :
Every 3-connected, essentially 11-connected line graph is Hamiltonian
Author/Authors :
Lai، نويسنده , , Hong-Jian and Shao، نويسنده , , Yehong and Wu، نويسنده , , Hehui and Zhou، نويسنده , , Ju، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
6
From page :
571
To page :
576
Abstract :
Thomassen conjectured that every 4-connected line graph is Hamiltonian. A vertex cut X of G is essential if G − X has at least two non-trivial components. We prove that every 3-connected, essentially 11-connected line graph is Hamiltonian. Using Ryjáčekʹs line graph closure, it follows that every 3-connected, essentially 11-connected claw-free graph is Hamiltonian.
Keywords :
claw-free graph , Super-Eulerian graphs , Dominating Eulerian subgraph , Essential connectivity , Line graph , hamiltonian graph , Collapsible graph
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527709
Link To Document :
بازگشت