Title of article :
Short paths in quasi-random triple systems with sparse underlying graphs
Author/Authors :
Polcyn، نويسنده , , Joanna and R?dl، نويسنده , , Vojtech and Ruci?ski، نويسنده , , Andrzej and Szemerédi، نويسنده , , Endre، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
24
From page :
584
To page :
607
Abstract :
The regularity lemma for 3-uniform hypergraphs asserts that every large hypergraph can be decomposed into a bounded number of quasi-random structures consisting of a sub-hypergraph and a sparse underlying graph. In this paper we show that in such a quasi-random structure most pairs of the edges of the graph can be connected by hyperpaths of length at most twelve. Some applications are also given.
Keywords :
triple systems , paths , quasi-randomness
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527715
Link To Document :
بازگشت