Title of article :
On the minimal degree implying equality of the largest triangle-free and bipartite subgraphs
Author/Authors :
Balogh، نويسنده , , Jَzsef and Keevash، نويسنده , , Peter and Sudakov، نويسنده , , Benny، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
14
From page :
919
To page :
932
Abstract :
Erdős posed the problem of finding conditions on a graph G that imply t ( G ) = b ( G ) , where t ( G ) is the largest number of edges in a triangle-free subgraph and b ( G ) is the largest number of edges in a bipartite subgraph. Let δ c be the least number so that any graph G on n vertices with minimum degree δ c n has t ( G ) = b ( G ) . Extending results of Bondy, Shen, Thomassé and Thomassen we show that 0.75 ⩽ δ c < 0.791 .
Keywords :
Extremal Graphs Theory , triangle-free graphs , Turلnיs theorem
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527748
Link To Document :
بازگشت