Title of article :
On 3-colorable plane graphs without 5- and 7-cycles
Author/Authors :
Xu، نويسنده , , Baogang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
6
From page :
958
To page :
963
Abstract :
In this note, it is proved that every plane graph without 5- and 7-cycles and without adjacent triangles is 3-colorable. This improves the result of [O.V. Borodin, A.N. Glebov, A. Raspaud, M.R. Salavatipour, Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B 93 (2005) 303–311], and offers a partial solution for a conjecture of Borodin and Raspaud [O.V. Borodin, A. Raspaud, A sufficient condition for planar graphs to be 3-colorable, J. Combin. Theory Ser. B 88 (2003) 17–27].
Keywords :
Coloring , plane graph , cycle
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527751
Link To Document :
بازگشت