Title of article :
On the monotonicity and convexity of the remainder of the Stirling formula
Author/Authors :
Cristinel Mortici، نويسنده , , Cristinel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
3
From page :
869
To page :
871
Abstract :
Shi, Liu and Hu [X. Shi, F. Liu, M. Hu, A new asymptotic series for the Gamma function, J. Comput. Appl. Math. 195 (2006) 134–154] proved that the function θ ( x ) defined by Γ ( x + 1 ) = 2 π ( x / e ) x e θ ( x ) / 12 x is strictly increasing for x ≥ 1 . The aim of our work is to prove that − x − 1 θ ‴ ( x ) is strictly completely monotonic on ( 0 , ∞ ) . As direct consequences, we show that θ is strictly convex on ( 0 , ∞ ) , and then we prove that θ is strictly decreasing on ( 0 , β ) , and strictly increasing on ( β , ∞ ) , where β = 0.34142 … .
Keywords :
Stirling formula , Gamma and polygamma functions , Complete monotonicity
Journal title :
Applied Mathematics Letters
Serial Year :
2011
Journal title :
Applied Mathematics Letters
Record number :
1527860
Link To Document :
بازگشت