Title of article :
An optimal double inequality between geometric and identric means
Author/Authors :
Wang، نويسنده , , Miao-Kun and Wang، نويسنده , , Zi-Kui and Chu، نويسنده , , Yu-Ming، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
5
From page :
471
To page :
475
Abstract :
We find the greatest value p and least value q in ( 0 , 1 / 2 ) such that the double inequality G ( p a + ( 1 − p ) b , p b + ( 1 − p ) a ) < I ( a , b ) < G ( q a + ( 1 − q ) b , q b + ( 1 − q ) a ) holds for all a , b > 0 with a ≠ b . Here, G ( a , b ) , and I ( a , b ) denote the geometric, and identric means of two positive numbers a and b , respectively.
Keywords :
Geometric mean , Identric mean , Inequality
Journal title :
Applied Mathematics Letters
Serial Year :
2012
Journal title :
Applied Mathematics Letters
Record number :
1528289
Link To Document :
بازگشت