Title of article :
A lethargy result for real analytic functions
Author/Authors :
Almira، نويسنده , , J.M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
We prove that, if ( C [ a , b ] , { A n } ) is an approximation scheme and { A n } satisfies the de La Vallée Poussin Theorem, there are examples of real-valued continuous functions on [ a , b ] , analytic on ( a , b ] , which are “poorly approximable” by the elements of { A n } . This illustrates the thesis that the smoothness conditions guaranteeing that a function is “well approximable” must be “global”. The failure of smoothness at endpoints may result in an arbitrarily slow rate of approximation.
Keywords :
Approximation scheme , Bernstein’s lethargy , De La Vallée Poussin theorem , Smoothness , approximation error , Haar space
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters