Title of article :
Relative entropy and discrete Poincaré inequalities for reducible matrices
Author/Authors :
Banasiak، نويسنده , , Jacek and Namayanja، نويسنده , , Proscovia Lubega، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
5
From page :
2193
To page :
2197
Abstract :
A general relative entropy functional has been used recently in Perthame (2007) [3] to provide a uniform treatment of various estimates of the decay of the exponential function ( e t A ) t ≥ 0 , where A is a matrix with positive off-diagonal entries. In this note we show that the method can be extended to general irreducible matrices. For reducible matrices, on the other hand, we show that staying within the framework of Perthame (2007) [3] only allows for control of the evolution in certain invariant subspaces of A .
Keywords :
Reducible matrices , Irreducible matrices , Relative entropy , Matrix exponential function , Linear systems , Perron–Frobenius theorem
Journal title :
Applied Mathematics Letters
Serial Year :
2012
Journal title :
Applied Mathematics Letters
Record number :
1528621
Link To Document :
بازگشت