Title of article :
On the unbounded divergence in the best approximation on equidistant nodes
Author/Authors :
Mitrea، نويسنده , , Alexandru I. Nicolin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
4
From page :
61
To page :
64
Abstract :
In this work, we point out a superdense (meaning residual, dense and uncountable) set X 0 in the Banach space of all functions f : [ − 1 , 1 ] → R possessing r th continuous derivatives ( r ∈ N ) such that for each function in X 0 the discrete best approximation polynomials associated with the equidistant nodes in [ − 1 , 1 ] unboundedly diverge on a superdense set in [ − 1 , 1 ] of full measure.
Keywords :
Unbounded divergence , Superdense set , Best approximation , Equidistant nodes
Journal title :
Applied Mathematics Letters
Serial Year :
2013
Journal title :
Applied Mathematics Letters
Record number :
1528765
Link To Document :
بازگشت