Title of article :
On the sum of k largest eigenvalues of graphs and symmetric matrices
Author/Authors :
Mohar، نويسنده , , Bojan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
306
To page :
313
Abstract :
Let k be a positive integer and let G be a graph of order n ⩾ k . It is proved that the sum of k largest eigenvalues of G is at most 1 2 ( k + 1 ) n . This bound is shown to be best possible in the sense that for every k there exist graphs whose sum is 1 2 ( k + 1 2 ) n − o ( k − 2 / 5 ) n . A generalization to arbitrary symmetric matrices is given.
Keywords :
Largest eigenvalue , Eigenvalue sum , Spectral radius , Graph energy , Symmetric matrix , Adjacency matrix , Taylor graphs , Strongly regular graph , Extremal matrix theory
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2009
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1528822
Link To Document :
بازگشت