Title of article :
Cayley sum graphs and eigenvalues of -fullerenes
Author/Authors :
DeVos، نويسنده , , Matt and Goddyn، نويسنده , , Luis and Mohar، نويسنده , , Bojan and ??mal، نويسنده , , Robert، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
12
From page :
358
To page :
369
Abstract :
We determine the spectra of cubic plane graphs whose faces have sizes 3 and 6. Such graphs, “ ( 3 , 6 ) -fullerenes,” have been studied by chemists who are interested in their energy spectra. In particular we prove a conjecture of Fowler, which asserts that all their eigenvalues come in pairs of the form { λ , − λ } except for the four eigenvalues { 3 , − 1 , − 1 , − 1 } . We exhibit other families of graphs which are “spectrally nearly bipartite” in the sense that nearly all of their eigenvalues come in pairs { λ , − λ } . Our proof utilizes a geometric representation to recognize the algebraic structure of these graphs, which turn out to be examples of Cayley sum graphs.
Keywords :
Cayley sum graph , Cayley addition graph , Geometric lattice , Flat torus , (3 , 6)-cage , Spectrum , Fullerene
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2009
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1528829
Link To Document :
بازگشت