Title of article :
Set systems with union and intersection constraints
Author/Authors :
Mubayi، نويسنده , , Dhruv and Ramadurai، نويسنده , , Reshma، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
4
From page :
639
To page :
642
Abstract :
Let 2 ⩽ d ⩽ k be fixed and n be sufficiently large. Suppose that G is a collection of k-element subsets of an n-element set, and | G | > ( n − 1 k − 1 ) . Then G contains d sets with union of size at most 2k and empty intersection. This extends the Erdős–Ko–Rado theorem and verifies a conjecture of the first author for large n.
Keywords :
Intersecting family , Extremal set theory , Cluster
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2009
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1528856
Link To Document :
بازگشت