Title of article :
The 3-colored Ramsey number of even cycles
Author/Authors :
Benevides، نويسنده , , Fabricio Siqueira and Skokan، نويسنده , , Jozef، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
19
From page :
690
To page :
708
Abstract :
Denote by R ( L , L , L ) the minimum integer N such that any 3-coloring of the edges of the complete graph on N vertices contains a monochromatic copy of a graph L. Bondy and Erdős conjectured that when L is the cycle C n on n vertices, R ( C n , C n , C n ) = 4 n − 3 for every odd n > 3 . Łuczak proved that if n is odd, then R ( C n , C n , C n ) = 4 n + o ( n ) , as n → ∞ , and Kohayakawa, Simonovits and Skokan confirmed the Bondy–Erdős conjecture for all sufficiently large values of n. and Łuczak determined an asymptotic result for the ‘complementary’ case where the cycles are even: they showed that for even n, we have R ( C n , C n , C n ) = 2 n + o ( n ) , as n → ∞ . In this paper, we prove that there exists n 1 such that for every even n ⩾ n 1 , R ( C n , C n , C n ) = 2 n .
Keywords :
Cycles , Ramsey number , Regularity lemma , stability
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2009
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1528865
Link To Document :
بازگشت