Title of article :
On a Newton–Steffensen type method
Author/Authors :
P?v?loiu، نويسنده , , I. and C?tina?، نويسنده , , E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
5
From page :
659
To page :
663
Abstract :
In this paper we study the convergence of a Newton–Steffensen type method for solving nonlinear equations in R , introduced by Sharma [J.R. Sharma, A composite third order Newton–Steffensen method for solving nonlinear equations, Appl. Math. Comput. 169 (2005), 242–246]. simplified assumptions regarding the smoothness of the nonlinear function, we show that the q -convergence order of the iterations is 3. The efficiency index of the method is 3 3 , and is larger than I 2 = 2 , which corresponds to the Newton method or the Steffensen method. er, we show that if the nonlinear function maintains the same monotony and convexity on an interval containing the solution, and the initial approximation satisfies the Fourier condition, then the iterations converge monotonically to the solution. o obtain a posteriori formulas for controlling the errors. merical examples confirm the theoretical results.
Keywords :
Convergence Order , Steffensen method , Nonlinear equations , newton method
Journal title :
Applied Mathematics Letters
Serial Year :
2013
Journal title :
Applied Mathematics Letters
Record number :
1528953
Link To Document :
بازگشت