Title of article :
A Lie-group method for nonlinear dynamical systems
Author/Authors :
Liu، نويسنده , , Chein-Shan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
8
From page :
710
To page :
717
Abstract :
It is known that a nonzero vector x ∈ R n can be decomposed into a direction multiplied by a length, i.e., x = ‖ x ‖ n . For a nonlinear dynamical system x ̇ = f ( x , t ) we can derive a Jordan dynamics for n , and a generalized Hamiltonian dynamics for x with a diagonal symmetric and a skew-symmetric coefficient matrix in a quasilinear system: x ̇ = [ S + W ] x . The new system endows a Lie-symmetry D S O ( n ) . Then we derive a closed-form formula x ( t ) = G ( t ) x ( 0 ) , G ( t ) ∈ D S O ( n ) for a small time step with t ≤ h , where h is a small stepsize. Three numerical examples are given to validate the accuracy and efficiency of the D S O ( n ) method.
Keywords :
nonlinear dynamical system , Jordan dynamics , Lie-group D S O ( n ) , Group-preserving scheme , Generalized Hamiltonian formulation
Journal title :
Applied Mathematics Letters
Serial Year :
2013
Journal title :
Applied Mathematics Letters
Record number :
1528966
Link To Document :
بازگشت