Title of article :
Optimal sampling and curve interpolation via wavelets
Author/Authors :
Kim، نويسنده , , Heeyoung and Huo، نويسنده , , Xiaoming، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
We propose a wavelet-based method for determining optimal sampling positions and inferring underlying functions based on the samples when it is known that the underlying function is Lipschitz. We first propose a Lipschitz regularity-based statistical model for data which are sampled from a Lipschitz curve. And then we propose a wavelet-based interpolation method for generating a Lipschitz curve given a set of points, and derive the optimal sampling positions.
Keywords :
wavelets , Optimal sampling , Interpolation , Lipschitz conditions
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters