Title of article :
Higher-order integrability for a semilinear reaction–diffusion equation with distribution derivatives in
Author/Authors :
Sun، نويسنده , , Chunyou and Yuan، نويسنده , , C. Lili Zhou Shi، نويسنده , , Jiancheng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
8
From page :
949
To page :
956
Abstract :
In this paper, we prove some asymptotic higher-order integrability for the solution of a semilinear reaction–diffusion equation defined on R N ( N ⩾ 3 ) with a polynomially growing nonlinearity of arbitrary order and with distribution derivatives in the inhomogeneous term. As an application, we obtain the existence of a ( L 2 ( R N ) , L 2 ( R N ) ∩ L p ( R N ) ) -global attractor immediately; moreover, such an attractor can attract every L 2 ( R N ) -bounded set with the L 2 ( R N ) ∩ L p + δ ( R N ) -norm for any δ ∈ [ 0 , ∞ ) .
Keywords :
Unbounded domain , Reaction–diffusion equation , Asymptotic higher-order integrability
Journal title :
Applied Mathematics Letters
Serial Year :
2013
Journal title :
Applied Mathematics Letters
Record number :
1529040
Link To Document :
بازگشت