Title of article :
Efficient preconditioning for the discontinuous Galerkin finite element method by low-order elements
Author/Authors :
Hartmann، نويسنده , , R. and Luk??ov?-Medvidʹov?، نويسنده , , M. and Prill، نويسنده , , F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
17
From page :
1737
To page :
1753
Abstract :
We derive and analyze a block diagonal preconditioner for the linear problems arising from a discontinuous Galerkin finite element discretization. The method can be applied to second-order self-adjoint elliptic boundary value problems and exploits the natural decomposition of the discrete function space into a global low-order subsystem and components of higher polynomial degree. Similar to results for the p-version of the conforming FEM, we prove for the interior penalty discontinuous Galerkin discretization that the condition number of the preconditioned system is uniformly bounded with respect to the mesh size of the triangulation. Numerical experiments demonstrate the performance of the method.
Keywords :
Discontinuous Galerkin Method , Block diagonal preconditioning , Static condensation , advection–diffusion equation
Journal title :
Applied Numerical Mathematics
Serial Year :
2009
Journal title :
Applied Numerical Mathematics
Record number :
1529237
Link To Document :
بازگشت