Title of article :
Finite element approximation of Maxwell eigenproblems on curved Lipschitz polyhedral domains
Author/Authors :
Dello Russo، نويسنده , , Anahي and Alonso، نويسنده , , Ana، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
27
From page :
1796
To page :
1822
Abstract :
This paper deals with the finite element approximation of the spectral problem for the Maxwell equation on a curved non-convex Lipschitz polyhedral domain Ω. Convergence and optimal order error estimates are proved for the lowest order edge finite element space of Nédélec on a tetrahedral mesh of approximate domains Ω h ⊄ Ω . These convergence results are based on the discrete compactness property which is proved to hold true also in this case.
Keywords :
Curved domains , Discrete compactness property , finite element methods , Edge elements , Maxwell eigenvalue problem
Journal title :
Applied Numerical Mathematics
Serial Year :
2009
Journal title :
Applied Numerical Mathematics
Record number :
1529245
Link To Document :
بازگشت