Title of article :
Diffuse interface methods for multiclass segmentation of high-dimensional data
Author/Authors :
Merkurjev، نويسنده , , Ekaterina and Garcia-Cardona، نويسنده , , Cristina and Bertozzi، نويسنده , , Andrea L. and Flenner، نويسنده , , Arjuna and Percus، نويسنده , , Allon G. Percus and Olivier C. Martin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
6
From page :
29
To page :
34
Abstract :
We present two graph-based algorithms for multiclass segmentation of high-dimensional data, motivated by the binary diffuse interface model. One algorithm generalizes Ginzburg–Landau (GL) functional minimization on graphs to the Gibbs simplex. The other algorithm uses a reduction of GL minimization, based on the Merriman–Bence–Osher scheme for motion by mean curvature. These yield accurate and efficient algorithms for semi-supervised learning. Our algorithms outperform existing methods, including supervised learning approaches, on the benchmark datasets that we used. We refer to Garcia-Cardona (2014) for a more detailed illustration of the methods, as well as different experimental examples.
Keywords :
segmentation , MBO scheme , Convex splitting , graphs , Ginzburg–Landau functional
Journal title :
Applied Mathematics Letters
Serial Year :
2014
Journal title :
Applied Mathematics Letters
Record number :
1529272
Link To Document :
بازگشت