Title of article :
Nonconforming finite element approximations of the Steklov eigenvalue problem
Author/Authors :
Yang، نويسنده , , Yidu and Li، نويسنده , , Qin and Li، نويسنده , , Sirui، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
This paper deals with nonconforming finite element approximations of the Steklov eigenvalue problem. For a class of nonconforming finite elements, it is shown that the j-th approximate eigenpair converges to the j-th exact eigenpair and error estimates for eigenvalues and eigenfunctions are derived. Furthermore, it is proved that the j-th eigenvalue derived by the EQ 1 rot element gives lower bound of the j-th exact eigenvalue, whereas the nonconforming Crouzeix–Raviart element and the Q 1 rot element provide lower bounds of the large eigenvalues. Numerical results are presented to confirm the considered theory.
Keywords :
Lower bounds of the eigenvalues , Steklov eigenvalue problem , error estimates , Nonconforming finite elements
Journal title :
Applied Numerical Mathematics
Journal title :
Applied Numerical Mathematics