Title of article :
Convergence of a standard adaptive nonconforming finite element method with optimal complexity
Author/Authors :
Mao، نويسنده , , Shipeng and Zhao، نويسنده , , Xuying and Shi، نويسنده , , Zhongci، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
16
From page :
673
To page :
688
Abstract :
In this paper, we analyze the convergence and optimal complexity of the usual simple adaptive nonconforming finite element method by using Dörfler collective marking strategy. Based on several basic ingredients, such as the estimator reduction, quasi-orthogonality, local upper bound and so on, we eventually show the convergence of the adaptive algorithm by establishing the reduction of some total error and the quasi-optimal convergence rate. Our analysis does not need the relation between the nonconforming P 1 element and the mixed Raviart–Thomas element. The results of numerical experiments confirm that our adaptive algorithm is optimal.
Keywords :
Nonconforming finite elements , Adaptive methods , a posteriori error estimation , Convergence Rate , Optimal computational complexity
Journal title :
Applied Numerical Mathematics
Serial Year :
2010
Journal title :
Applied Numerical Mathematics
Record number :
1529484
Link To Document :
بازگشت