Title of article :
On stability of difference schemes. Central schemes for hyperbolic conservation laws with source terms
Author/Authors :
Borisov، نويسنده , , V.S. and Mond، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
27
From page :
895
To page :
921
Abstract :
The stability of nonlinear explicit difference schemes with not, in general, open domains of the scheme operators are studied. For the case of path-connected, bounded, and Lipschitz domains, we establish the notion that a multi-level nonlinear explicit scheme is stable iff (if and only if) the corresponding scheme in variations is stable. A new modification of the central Lax–Friedrichs (LxF) scheme is developed to be of the second-order accuracy. The modified scheme is based on nonstaggered grids. A monotone piecewise cubic interpolation is used in the central scheme to give an accurate approximation for the model in question. The stability of the modified scheme is investigated. Some versions of the modified scheme are tested on several conservation laws, and the scheme is found to be accurate and robust. As applied to hyperbolic conservation laws with, in general, stiff source terms, it is constructed a second-order nonstaggered central scheme based on operator-splitting techniques.
Keywords :
Scheme in variation , hyperbolic equations , stability
Journal title :
Applied Numerical Mathematics
Serial Year :
2012
Journal title :
Applied Numerical Mathematics
Record number :
1529533
Link To Document :
بازگشت