Title of article :
Supraconvergence and supercloseness in Volterra equations
Author/Authors :
Ferreira، نويسنده , , J.A. and Pinto، نويسنده , , L. and Romanazzi، نويسنده , , G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
22
From page :
1718
To page :
1739
Abstract :
Integro-differential equations of Volterra type arise, naturally, in many applications such as for instance heat conduction in materials with memory, diffusion in polymers and diffusion in porous media. The aim of this paper is to study a finite difference discretization of the mentioned integro-differential equations. Second convergence order with respect to the H 1 norm is established which means that the discretization proposed is supraconvergent in finite difference methods language. As the finite difference method can be seen as a piecewise linear finite element method combined with special quadrature formulas, our result establishes the supercloseness of the gradient in the finite element language. Numerical results illustrating the discussed theoretical results are included.
Keywords :
Integro-differential equations , finite difference methods , Piecewise linear finite element methods , Supercloseness , Supraconvergence
Journal title :
Applied Numerical Mathematics
Serial Year :
2012
Journal title :
Applied Numerical Mathematics
Record number :
1529661
Link To Document :
بازگشت