Title of article :
An efficient, reliable and robust error estimator for elliptic problems in
Author/Authors :
Holst، نويسنده , , Michael and Ovall، نويسنده , , Jeffrey S. and Szypowski، نويسنده , , Ryan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
21
From page :
675
To page :
695
Abstract :
In this article, we develop and analyze a hierarchical-type error estimator for a general class of second-order linear elliptic boundary value problems in bounded three-dimensional domains. This type of indicator automatically satisfies a global lower bound inequality, thereby giving efficiency, without regularity assumptions beyond those giving well-posedness of the continuous and discrete problems. The main focus of the paper is then to establish the reverse reliability result: a global upper bound on the error in terms of the error estimate (plus an oscillation term), again without additional regularity assumptions. The proof of this inequality depends on a clever choice of the space in which the error indicator lies and a moment-capturing quasi-interpolation result. We finish the article with a series of numerical experiments to illustrate the behavior predicted by the theoretical results.
Keywords :
Finite elements , A posteriori estimates , Reliability
Journal title :
Applied Numerical Mathematics
Serial Year :
2011
Journal title :
Applied Numerical Mathematics
Record number :
1529677
Link To Document :
بازگشت