Title of article :
Convergence rates of derivatives of a family of barycentric rational interpolants
Author/Authors :
Berrut، نويسنده , , Jean-Paul and Floater، نويسنده , , Michael S. and Klein، نويسنده , , Georges، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
989
To page :
1000
Abstract :
In polynomial and spline interpolation the k-th derivative of the interpolant, as a function of the mesh size h, typically converges at the rate of O ( h d + 1 − k ) as h → 0 , where d is the degree of the polynomial or spline. In this paper we establish, in the important cases k = 1 , 2 , the same convergence rate for a recently proposed family of barycentric rational interpolants based on blending polynomial interpolants of degree d.
Keywords :
Rational interpolation , Barycentric form , Convergence Rate
Journal title :
Applied Numerical Mathematics
Serial Year :
2011
Journal title :
Applied Numerical Mathematics
Record number :
1529722
Link To Document :
بازگشت