Title of article :
Iterative refinement techniques for solving block linear systems of equations
Author/Authors :
Smoktunowicz، نويسنده , , Alicja and Smoktunowicz، نويسنده , , Agata، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
220
To page :
229
Abstract :
We study the numerical properties of classical iterative refinement (IR) and k-fold iterative refinement (RIR) for computing the solution of a nonsingular linear system of equations A x = b with A partitioned into blocks using floating point arithmetic. We assume that all computations are performed in the working (fixed) precision. We prove that the numerical quality of RIR is superior to that of IR.
Keywords :
Iterative refinement , Condition number , Linear systems , numerical stability , Block matrices
Journal title :
Applied Numerical Mathematics
Serial Year :
2013
Journal title :
Applied Numerical Mathematics
Record number :
1529780
Link To Document :
بازگشت