Title of article :
Superlinearly convergent algorithms for the two-dimensional space–time Caputo–Riesz fractional diffusion equation
Author/Authors :
Chen، نويسنده , , Minghua and Deng، نويسنده , , Weihua and Wu، نويسنده , , Yujiang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
20
From page :
22
To page :
41
Abstract :
In this paper, we discuss the space–time Caputo–Riesz fractional diffusion equation with variable coefficients on a finite domain. The finite difference schemes for this equation are provided. We theoretically prove and numerically verify that the implicit finite difference scheme is unconditionally stable (the explicit scheme is conditionally stable with the stability condition τ γ ( Δ x ) α + τ γ ( Δ y ) β < C ) and 2nd order convergent in space direction, and ( 2 − γ ) th order convergent in time direction, where γ ∈ ( 0 , 1 ] .
Keywords :
Space–time Caputo–Riesz fractional diffusion equation , numerical stability , Convergence
Journal title :
Applied Numerical Mathematics
Serial Year :
2013
Journal title :
Applied Numerical Mathematics
Record number :
1529813
Link To Document :
بازگشت